PII: S0040-4039(97)01559-1

Reactivity of (E)-1-(tert-Butyldimethyl)silyloxy-3,3-bis(tributylstannyl)-Propene: Syn Selective SE Addition to Aldehydes

David Madec, Jean-Pierre Férézou*

Laboratoire de Synthèse Organique associé au C.N.R.S., DCSO, Ecole Polytechnique, F-91128, Palaiseau (France).

Abstract: The reactivity of (E)-1-(tert-butyldimethyl)silyloxy-3,3-bis(tributylstannyl)propene 1 as potential 1,3 dianion equivalent has been investigated. Condensation with aldehydes **4a-h**, in presence of BF3-OEt2, afforded in high yields the mono-protected diols **5a-h** exhibiting an exclusive E configuration of the vinyltin residue. Good to high syn selectivities have been measured, in agreement with an SE' addition mechanism. Further transformation of the resulting vinyltin moiety of these diols into various functionalities has been successfully tested. © 1997 Elsevier Science Ltd.

In the preceding paper ¹ is described a synthesis of the new gem-distannyl derivative 1 which can be claimed to exhibit interesting synthetic potentialities, especially in the field of (di)enediynes antitumor agents.² In a first set of reactions, this 1-silyloxy-3,3-bis(tributylstannyl)propene can be expected to behave as a classical allyl mono-tin silyl enol ether to give, when added to carbonyl reagents, the corresponding dihydroxyvinylstannanes 2 (Scheme 1).³ Interestingly for synthetic purposes, the latter vinylstannanes are likely to be utilized in a great number of transformations widely used in the synthesis of complex natural compounds.⁴

Bu₃Sn OTBS
$$E^{1\Theta} = RCHO$$
 OTBS $E^{2\Theta}$ OTBS $E^{2\Theta}$

According to precedents from the well studied chemistry of analogous allylic substrates bearing a single tin residue, 5 allyl bis-stannanes such as 1 can be expected to exhibit, under Lewis acid conditions, high reactivities towards aldehydes which might lead to mono-protected diols 2 according to a *syn* selective S_E ' mechanism. More recent investigations showed that 1,1-hetero-Sn,Si- or 1,1-homo-Si,Si-alk-2-enes derivatives led, in presence of $BF_3 \cdot Et_2O$, to similar *syn* selective S_E ' condensation reactions with different electrophiles including several aldehydes. However, to date, nothing is known about the reactivity of 1 when subjected to Lewis acid-promoted condensations and this paper deals with the results of the preliminary investigations on the reactivity of 1 with aldehydes as well as further transformations of the resulting adducts 2 in view of synthetic applications.

(E)-1-(tert-Butyldimethyl)silyloxy-3,3-bis(tributylstannyl)propene 1 has been condensed on different aldehydes 4a-h in presence of BF₃·OEt₂ in dichloromethane and the results are summarised on the Table. In all reported cases, a solution of 1 (1.0 eq) in CH₂Cl₂ was added at -78°C to a premixed solution containing the required aldehyde 4a-h (1.1 eq) and BF₃·OEt₂ (1.1 eq). After completion of the addition of 1 to the reaction mixture, 3.0 supplementary equivalents of. BF₃·OEt₂ were added. After complete disparition of the starting material, the reaction mixture was quenched with a saturated aqueous solution of NaHCO₃ to give after

e-mail: ferezou@poly.polytechnique.fr

subsequent flash-chromatography, the mono-protected 1,2-diols **5a-h** in 81-100% yields. The additional 3 equivalents of Lewis acid are essential for the efficiency of the reaction; otherwise, the condensation revealed sluggish and upon longer reaction times, notable amounts of hydrodestannylated derivatives were isolated.

Bu ₃ Sn Bu ₃ Sn	OTBS	+	RCHO -	BF ₃ ·Et ₂ O CH ₂ Cl ₂	OTBS Bu ₃ Sn R 5a-h OH
Aldehyde, R =			Product	Yield (%)	Diastereomeric ratio <i>syn/anti</i> (%)
4a	Et		5a	quant.	87:13
4b	Pr		5b	quant.	> 95:5
4c	C ₆ H ₁₁		5c	95%	93:7
4d	Ph		5d	96%	95:5
4e	/		5e	90%	90:10
4f	Bu ₃ Sn		5f	97%	88:12
4g	"Bu	•	5g	96%	75:25
4h	TMS-=	-	5h	97%	66:33
* determined by ¹ H NMR Table					

All the yields obtained throughout these assays are good to excellent. In all cases, as already observed in the case of 1,1-hetero-Sn,Si ou 1,1-homo-Si,Si by M. Lautens *et al*, 5 the configuration of the double bond is E with no trace of the Z isomer, in agreement with the $S_{E'}$ antiperiplanar transition state depicted on Scheme 2. Although synclinal dispositions leading to *syn* adducts cannot be excluded, 9 the depicted disposition, which is in agreement with previous hypotheses for the crotyl mono-tin analogues of 1,10 minimises 1,3-allylic strain.

The *syn/anti* diastereomeric ratio of isomers ranges from 66:33/75:25 in the case of the sterically less demanding diols 5h or 5g respectively up to 95:5 in the case of the most encumbered isobutyraldehyde 5b. These ratios are significantly lower than those obtained in the case of the corresponding γ -silyloxy crotyl monostannanes by Marshall *et al.*^{5a} Modeling the approach of the reactants according to an antiperiplanar S_E transition state show that steric repulsions may exist between the axially disposed non-reacting tin residue of 1 and the R group of aldehydes. These steric biases can partially counterbalance the OTBS repulsion which is claimed to favor the formation of the *syn* mono-protected diol. Release of these interactions can be accomplished, at least partly, when the depicted synclinal S_E transition state is developed, leading to *anti* isomers of 5a-h.

For the unambiguous assignment of the *syn* stereochemistry, a series of transformations was carried out on most of the diols in order to correlate their NMR data with those of thoroughly described compounds as shown on Scheme 3 (all the transformations have been carried out on the purified syn/anti mixtures of diastereomers obtained in the ratios described on the Table). Aliphatic mono-protected diols 5a,b have been transformed into acetonides 8a,b *via* diols 7a,b. ¹¹ ¹H NMR data for *syn* diol 7d obtained after HCl/EtOH treatment of 5d were in full agreement with the literature. ¹² *Syn* configuration assignment of 7c obtained after acidic treatment of 5c has been deduced from comparison with ¹H NMR data reported for the corresponding *anti* isomer. ¹³ The bis-vinyltin derivative 5f, when treated with HCl/EtOH, cleanly gave the known *syn* hexa-1,5-diene-3,4-diol 7f. ¹⁴ The acetylenic mono-protected diol 5h has been converted under the same acidic conditions into the *syn* trimethylsilylacetylenic diol 7h which exhibits ¹H NMR signals identical with those of its known desilylated analogue. ¹⁵ The major *syn* relative configuration of the other products has been tentatively deduced from the above ones.

Another set of reactions has been carried out to investigate the synthetic potentialities of these monoprotected diols. Chlorination of 5d and 5h took place smoothly to give, in presence of CuCl₂, the chloroalcohols 9d and 9h in high yield. According to a published procedure, ¹⁷ vinylstannane 5h has been transformed, in 47% yield, into the vinylic sulfone 10 which could be efficiently metalled to give the Z vinyltin derivative 11 without isomerization of the double bond. ¹⁸ Perhaps more interestingly, the symmetrically disposed bis-vinyltin mono-protected diols 5f were submitted to two types of cross-coupling reactions. A Stille coupling reaction between 5f and iodobenzene cleanly gave the expected bis-styryl derivative 12 in 71% yield after purification. ¹⁹ On another hand, a Sonogashira coupling reaction ²⁰ was carried out on the bis-iodovinyl derivative 13 (prepared in high yield from 5f through tin-iodine exchange)²¹ to give the bis-enyne 14 in 73% yield.

initial allylation step gave the syn adducts 5a-h in high-yield with exclusive formation of the 1,3-addition products exhibiting the E configuration of the vinyltin double bond. We are currently applying these results in the field of neocarzinostatin.

Acknowledgements: Thanks are due to CNRS, URA 1308 for financial support and to La Ligue Nationale Contre le Cancer for a fellowship to D.M.

References and Notes:

- 1. Madec, D.; Férézou, J.-P. Tetrahedron Lett. 1997, preceding paper.
- Reviews: Skrydstrup, T.; Ulibarri, G.; Audrain, H.; Grierson, D. S. "The Enediynes Antibiotics Calicheamicin plesperamicin A_I, and Dynemycin: Physiochemical and Biological Properties Partial and Total Synthesis" and Hirama, M. "Synthesis and Chemistry of Neocarzinostatin Analogs" in "Recent Progress in the Chemical Synthesis of Antibiotics and Related Microbial Products" Vol. 2, G. Lukacs Ed. Springer-Verlag, Berlin Heidelberg, 1993. Nicolaou, K. C.; Dai, W.-M. Angew. Chem., Int. Ed. Engl. 1991, 30, 1387-1416.
- 3. For a pionneering work in this field: Quintard, J.-P.; Elissondo, B.; Pereyre, M. J. Org. Chem. 1983, 48, 1559-1560. For a review on allylic stannanes: Marshall, J. A. Chem. Rev. 1996, 96, 31-47.
- 4. Pereyre, M.; Quintard, J.-P.; Rahm, A. in Tin in Organic Synthesis; Butterworth, London, 1987.
- a) Marshall, J. A.; Welmaker, G. S. J. Org. Chem. 1992, 57, 7158-7163 and references therein. b) Marshall, J. A.; Jablonowski, J. A.; Elliott, L. M. J. Org. Chem. 1995, 60, 2662-2663.
- For a review on Lewis-acid promoted reactions of allyl tin compounds, see: Nishigaichi, Y.; Takuwa, A.; Naruta, Y.; Maruyama, K. Tetrahedron 1993, 49, 7395-7426 and references cited therein. For other aspects of the chemistry of allylstannanes including asymmetric induction, see: Poli, G.; Scolastico, C. Chemtracts 1991, 298-306. Marshall, J. A. ibid. 1992, 75-98. Thomas, E. J. ibid. 1994, 207-234.
- 7. Lautens, M.; Ben, R. N.; Delanghe, P. H. M. Tetrahedron 1996, 52, 7221-7234.
- All new compounds have been fully characterized by ¹H NMR, ¹³C NMR, IR, mass spectrometry and combustion analysis All ³J_{H-H} vinylic coupling constants range from 19.0 to 19.5 Hz. Typical protacol for preparation of (E)-1,6-bis-(tributylstannyl)-4-(tert-butyldimethyl)silyloxy-1,5-butadiene-3-ol 5f. To a solution of (E)-3-(tributylstannyl)-2-propenal 4f (1.01 g, 2.94 mmol, 1.10 eq) in dichloromethane (20 mL) at -78°C was added dropwise BF₃.OEt₂ (370 µL, 2.94 mmol, 1.10 eq). The mixture was stirred for 5 min and successively added at -78°C with a solution of 1-(tert-butyldimethyl)silyloxy-3,3bis(tributylstannyl)propene 1 (2.00 g, 2.67 mmol) in dichloromethane (30 mL) then BF₃.OEt₂ (990 µL, 8.0 mmol, 3.0 eq). The reaction mixture was stirred for 15 min at -78°C and quenched at this temperature by addition of 30 mL of a satured aqueous NaHCO3 solution. The resulting mixture was allowed to warm at room temperature and, after decantantion, the aqueous layer was extracted with 3x50 mL diethyl ether. The combined organic layers were washed with brine, dried over anhydrous MgSO4 and concentrated in vacuo. The crude product was purified by silica gel flash-chromatography (diethyl ether/petoleum ether 95:5) to give 2.09 g of 5f (97% yield, E/Z = 88:12). ¹H NMR (CDCl₃, 400 MHz) δ (ppm) : 6.27 (d, 1H, J = 19.1 Hz), 6.19 (d, 1H, J = 19.1 Hz), 6.01 (dd, 1H, J = 19.1, 4.4 Hz), 5.96 (dd, 1H, J = 19.1, 5.8 Hz), 3.93 (m, 2H), 2.60 (d, 1H, J = 4.4 Hz), 1.48 (m, 12H), 1.30 (m, 12H), 0.90 (m, 39H), 0.09 (s, 3H), 0.06 (s, 3H). ¹³C NMR (CDCl₃, 50.3 MHz) δ (ppm) : 148.0 (CH), 147.1 (CH, J_{Sn-C} = 39 Hz), 131.2 (CH, J_{Sn-C} = 41 Hz)), 129.6 (CH), 80.4 (CH, J_{Sn-C} = 64 Hz), 77.8 (CH, J_{Sn-C} = 43 Hz), 29.2 (CH₂, J_{Sn-C} = 19 Hz), 27.4 (CH₂, J_{Sn-C} = 54 Hz), 26 (CH₃), 18.3 (C), 13.8 (CH₂), 27.4 (CH₂, J_{Sn-C} = 54 Hz), 26 (CH₃), 18.3 (C), 13.8 (CH₂), 27.4 (CH₂ CH₃), 9.6 (CH₂, J_{117} Sn-C = 329 Hz, J_{119} Sn-C = 343 Hz), -3.9 (CH₃), -4.7 (CH₃). MS (CI, NH₃): m/z = 791 (M⁺+1-18), 777, 749, 675, 617, 443, 405, 347, 291, 235, 57. IR (Film), cm-1: 3568, 2955, 2926, 2869, 2854, 1602, 1463, 1376, 1251, 1080, 991, 863, 778. Anal. Calcd for C₃₆H₇₆O₂SiSn₂, 806.45, C: 53.62, H: 9.50. Found: C: 53.74, H: 9.51.
- Denmark, S. E.; Weber, E. J.; Wilson, T. M.; Willson, T. A. Tetrahedron 1989, 48, 1053-1065. Denmark, S. E.; Almstead, N. G. J. Org. Chem. 1994, 59, 5130-5132.
- Initially proposed by Yamamoto, Y.; Yatagai, H.; Naruta, Y.; Maruyama, K. J. Am. Chem. Soc. 1980, 102, 7107-7109.
 See also Ref. 7 and Ref. 5a).
- 11. Hoffmann, R. W.; Kemper, B.; Metternich, R.; Lehmeier, T. Liebigs Ann. Chem. 1985, 2246-2260.
- 12. Kadota, I.; Kobayashi, K.; Okano, H.; Asao, N.; Yamamoto, Y. Bull. Soc. Chim. Fr. 1995, 132, 615-623.
- 13. Barrett, A. G. M.; Malecha, J. W. J. Chem. Soc., Perkin Trans. I 1994, 1901-1905.
- 14. Scharf, H.-D.; Plum, H.; Fleischhauer, J.; Schleker, W. Chem. Ber. 1979, 112, 862-882.
- 15. Galaj, S.; Pascal, Y.-L. Bull. Soc. Chim. Fr. 1972, 3979-3988.
- 16. Takeda, T.; Kanamori, F.; Matsusita, H.; Fujiwara, T. Tetrahedron Lett. 1991, 32, 6563-6566.
- Labadie, S. S. J. Org. Chem. 1989, 54, 2496-2502. Parrain, J.-L.; Beaudet, I.; Duchêne, A.; Watrelot, S.; Quintard, J.-P. Tetrahedron Lett. 1993, 34, 5445-5448.
- 18. Najera, C.; Yus, M. J. Org. Chem. 1988, 53, 4708-4715. Eisch, J. J.; Galle, J. E. J. Org. Chem. 1979, 44, 3279-3280
- Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508-524. Stille, J. K.; Groh, B. L. J. Am. Chem. Soc. 1987, 109, 813-817.
- Sonogashira, K; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 4467-4470. Lee, C. M.; Tobias, B.; Holmes, J. M.; Harcourt, J. A.; Garst, M. E. J. Am. Chem. Soc. 1990, 112, 9330-9336. Crombie, L.; Hobbs, A. J. W.; Horsham, M. A.; Blade, R. J. Tetrahedron Lett. 1987, 28, 4875-4878.
- 21. Seyferth, D. J. Am. Chem. Soc. 1957, 79, 2133-2136.